
1

Chapter 2: Program and Network

Properties

--

2.1 Conditions of Parallelism

The advantage of multiprocessors lays when parallelism in the program is popularly

exploited and implemented using multiple processors. Thus in order to implement the

parallelism we should understand the various conditions of parallelism.

What are various bottlenecks in implementing parallelism? Thus for full implementation

of parallelism there are three significant areas to be understood namely computation

models for parallel computing, interprocessor communication in parallel architecture and

system integration for incorporating parallel systems. Thus multiprocessor system poses a

number of problems that are not encountered in sequential processing such as designing a

parallel algorithm for the application, partitioning of the application into tasks,

coordinating communication and synchronization, and scheduling of the tasks onto the

machine.

Data and Resource Dependence

The ability to execute several program segments in parallel requires each segment to be

independent of the other segments. We use a dependence graph to describe the relations.

The nodes of a dependence graph correspond to the program statement (instructions), and

directed edges with different labels are used to represent the ordered relations among the

statements. The analysis of dependence graphs shows where opportunity exists for

parallelization and vectorization.

Data dependence: The ordering relationship between statements is indicated by the data

dependence. Five type of data dependence are defined below:

1. Flow dependence: A statement S2 is flow dependent on S1 if an execution path exists

from s1 to S2 and if at least one output (variables assigned) of S1feeds in as input

(operands to be used) to S2 also called RAW hazard and denoted as

2. Antidependence: Statement S2 is antidependent on the statement S1 if S2 follows S1 in

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

2

the program order and if the output of S2 overlaps the input to S1 also called RAW

hazard and denoted as

3. Output dependence : two statements are output dependent if they produce (write) the

same output variable. Also called WAW hazard and denoted as

4. I/O dependence: Read and write are I/O statements. I/O dependence occurs not

because the same variable is involved but because the same file referenced by both I/O

statement.

5. Unknown dependence: The dependence relation between two statements cannot be

determined in the following situations:

• The subscript of a variable is itself subscribed(indirect addressing)

• The subscript does not contain the loop index variable.

• A variable appears more than once with subscripts having different coefficients

of the loop variable.

• The subscript is non linear in the loop index variable.

Parallel execution of program segments which do not have total data independence can

produce non-deterministic results.

Consider the following fragment of any program:

S1: Load R1, A

S2:Add R2, R1

S3:Move R1, R3

S4:Store B, R1

Here the Forward dependency S1to S2, S3 to S4, S2 to S2

Anti-dependency from S2to S3

Output dependency S1 toS3

Figure 2.1 Dependence graph

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

3

Control Dependence

This refers to the situation where the order of the execution of statements cannot be

determined before run time. For example all condition statement, where the flow of

statement depends on the output. Different paths taken after a conditional branch may

depend on the data hence we need to eliminate this data dependence among the

instructions. This dependence also exists between operations performed in successive

iterations of looping procedure. Control dependence often prohibits parallelism from

being exploited.

Control-independent example:

for (i=0;i<n;i++)

{

a[i] = c[i];

if (a[i] < 0) a[i] = 1;

}

Control-dependent example:

for (i=1;i<n;i++)

{

if (a[i-1] < 0) a[i] = 1;

}

Control dependence also avoids parallelism to being exploited. Compilers are used to

eliminate this control dependence and exploit the parallelism.

Resource dependence

Data and control dependencies are based on the independence of the work to be done.

Resource independence is concerned with conflicts in using shared resources, such as

registers, integer and floating point ALUs, etc. ALU conflicts a r e c a l l e d A L U

dependence. Memory (storage) conflicts are called storage dependence.

Bernstein’s Conditions

Bernstein’s conditions are a set of conditions which must exist if two processes can

execute in parallel.

Notation

Ii is the set of all input variables for a process Pi . Ii is also called the read set or domain

of Pi. Oi is the set of all output variables for a process Pi .Oi is also called write set

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

4

If P1 and P2 can execute in parallel (which is written as P1 || P2), then:

In terms of data dependencies, Bernstein’s conditions imply that two processes can

execute in parallel if they are flow-independent, antiindependent, and output-

independent. The parallelism relation || is commutative (Pi || Pj implies Pj || Pi), but not

transitive (Pi || Pj and Pj || Pk does not imply Pi || Pk) . Therefore, || is not an equivalence

relation. Intersection of the input sets is allowed.

Hardware and software parallelism

Hardware parallelism

Hardware parallelism is defined by machine architecture and hardware multiplicity i.e.,

functional parallelism times the processor parallelism .It can be characterized by the

number of instructions that can be issued per machine cycle. If a processor issues k

instructions per machine cycle, it is called a k-issue processor. Conventional processors

are one-issue machines. This provide the user the information about peak attainable

performance. Examples. Intel i960CA is a three-issue processor (arithmetic, memory

access, branch). IBM RS -6000 is a four-issue processor (arithmetic, floating-point,

memory access, branch).A machine with n k-issue processors should be able to handle a

maximum of nk threads simultaneously.

Software Parallelism

Software parallelism is defined by the control and data dependence of programs, and is

revealed in the program’s flow graph i.e., it is defined by dependencies with in the code

and is a function of algorithm, programming style, and compiler optimization.

Mismatch between software and hardware parallelism

Consider the example program graph in Fig.2.3a. There are eight instructions {four loads

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

5

and four arithmetic operations) to be executed in three consecutive machine cycles. Four

load operations are performed in the first cycle, followed by two multiply operations in

the second cycle and two add/subtract operations in the third cycle. Therefore the

parallelism varies from 4to 2 in three cycles. The average software parallelism is equal to

8/3 =2.67 instructions per cycle in this example program.

 Now consider execution of the same program by a two-issue processor which can

execute one memory access (load or write) and one arithmetic {add, subtract, multiply

etc.) operation simultaneously. With this hardware restriction, the program must execute

in seven machine cycles as shown in Fig. 2.3b. Therefore the hardware parallelism

displays an average value of 8/7 = 1.14 instructions executed per cycle. This demonstrates

a mismatch between the software parallelism and the hardware parallelism.

Match the software parallelism shown in fig 2.3a in a hardware platform of a dual

processor system where single issue processors are used. The achievable hardware

parallelism is shown in Fig 2.4.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

6

The Role of Compilers

Compilers used to exploit hardware features to improve performance. Interaction

between compiler and architecture design is a necessity in modern computer

development. It is not necessarily the case that more software parallelism will improve

performance in conventional scalar processors. The hardware and compiler should be

designed at the same time.

2.2 Program Partitioning & Scheduling

This section introduces the basic definitions of computational granularity or level of

parallelism in programs. Communication latency and scheduling issues are illustrated

with programming examples.

Grain size and latency

The size of the parts or pieces of a program that can be considered for parallel execution

can vary. The sizes are roughly classified using the term “granule size,” or simply

“granularity.” The simplest measure, for example, is the number of instructions in a

program part. Grain sizes are usually described as fine, medium or coarse, depending on

the level of parallelism involved.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

7

Latency

Latency is the time required for communication between different subsystems in a

computer. Memory latency, for example, is the time required by a processor to access

memory. Synchronization latency is the time required for two processes to synchronize

their execution. Computational granularity and communication latency are closely

related. Latency and grain size are interrelated and some general observation are

• As grain size decreases, potential parallelism increases, and overhead also

increases.

• Overhead is the cost of parallelizing a task. The principle overhead is

communication latency.

• As grain size is reduced, there are fewer operations between communication, and

hence the impact of latency increases.

• Surface to volume: inter to intra-node comm.

Levels of parallelism

Instruction Level Parallelism

This fine-grained, or smallest granularity level typically involves less than 20 instructions

per grain. The number of candidates for parallel execution varies from 2 to thousands,

with about five instructions or statements (on the average) being the average level of

parallelism.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

8

Advantages:

There are usually many candidates for parallel execution

Compilers can usually do a reasonable job of finding this parallelism

Loop-level Parallelism

Typical loop has less than 500 instructions. If a loop operation is independent between

iterations, it can be handled by a pipeline, or by a SIMD machine. Most optimized

program construct to execute on a parallel or vector machine. Some loops (e.g. recursive)

are difficult to handle. Loop-level parallelism is still considered fine grain computation.

Procedure-level Parallelism

Medium-sized grain; usually less than 2000 instructions. Detection of parallelism is more

difficult than with smaller grains; interprocedural dependence analysis is difficult and

history-sensitive. Communication requirement less than instruction level SPMD (single

procedure multiple data) is a special case Multitasking belongs to this level.

Subprogram-level Parallelism

Job step level; grain typically has thousands of instructions; medium- or coarse-grain

level. Job steps can overlap across different jobs. Multiprograming conducted at this level

No compilers available to exploit medium- or coarse-grain parallelism at present.

Job or Program-Level Parallelism

Corresponds to execution of essentially independent jobs or programs on a parallel

computer. This is practical for a machine with a small number of powerful processors,

but impractical for a machine with a large number of simple processors (since each

processor would take too long to process a single job).

Communication Latency

Balancing granularity and latency can yield better performance. Various latencies

attributed to machine architecture, technology, and communication patterns used.

Latency imposes a limiting factor on machine scalability. Ex. Memory latency increases

as memory capacity increases, limiting the amount of memory that can be used with a

given tolerance for communication latency.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

9

Interprocessor Communication Latency

• Needs to be minimized by system designer

• Affected by signal delays and communication patterns Ex. n communicating tasks

may require n (n - 1)/2 communication links, and the complexity grows

quadratically, effectively limiting the number of processors in the system.

Communication Patterns

• Determined by algorithms used and architectural support provided

• Patterns include permutations broadcast multicast conference

• Tradeoffs often exist between granularity of parallelism and communication

demand.

Grain Packing and Scheduling

Two questions:

How can I partition a program into parallel “pieces” to yield the shortest execution time?

What is the optimal size of parallel grains?

There is an obvious tradeoff between the time spent scheduling and synchronizing

parallel grains and the speedup obtained by parallel execution.

One approach to the problem is called “grain packing.”

Program Graphs and Packing

A program graph is similar to a dependence graph Nodes = { (n,s) }, where n = node

name, s = size (larger s = larger grain size).

Edges = { (v,d) }, where v = variable being “communicated,” and d = communication

delay.

Packing two (or more) nodes produces a node with a larger grain size and possibly more

edges to other nodes. Packing is done to eliminate unnecessary communication delays or

reduce overall scheduling overhead.

Scheduling

A schedule is a mapping of nodes to processors and start times such that communication

delay requirements are observed, and no two nodes are executing on the same processor

at the same time. Some general scheduling goals

• Schedule all fine-grain activities in a node to the same processor to minimize

communication delays.

• Select grain sizes for packing to achieve better schedules for a particular parallel

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

10

machine.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

11

Node Duplication

Grain packing may potentially eliminate interprocessor communication, but it may not

always produce a shorter schedule. By duplicating nodes (that is, executing some

instructions on multiple processors), we may eliminate some interprocessor

communication, and thus produce a shorter schedule.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

12

Program portioning and scheduling

Scheduling and allocation is a highly important issue since an inappropriate scheduling of

tasks can fail to exploit the true potential of the system and can offset the gain from

parallelization. In this paper we focus on the scheduling aspect. The objective of

scheduling is to minimize the completion time of a parallel application by properly

allocating the tasks to the processors. In a broad sense, the scheduling problem exists in

two forms: static and dynamic. In static scheduling, which is usually done at compile

time, the characteristics of a parallel program (such as task processing times,

communication, data dependencies, and synchronization requirements) are known before

program execution

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

13

A parallel program, therefore, can be represented by a node- and edge-weighted directed

acyclic graph (DAG), in which the node weights represent task processing times and the

edge weights represent data dependencies as well as the communication times between

tasks. In dynamic scheduling only, a few assumptions about the parallel program can be

made before execution, and thus, scheduling decisions have to be made on-the-fly. The

goal of a dynamic scheduling algorithm as such includes not only the minimization of the

program completion time but also the minimization of the scheduling overhead which

constitutes a significant portion of the cost paid for running the scheduler. In general

dynamic scheduling is an NP hard problem.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

14

2.3 Program flow mechanism

Conventional machines used control flow mechanism in which order of program

execution explicitly stated in user programs. Dataflow machines which instructions can

be executed by determining operand availability.

Reduction machines trigger an instruction’s execution based on the demand for its

results.

Control Flow vs. Data Flow

In Control flow computers the next instruction is executed when the last instruction as

stored in the program has been executed where as in Data flow computers an

instruction executed when the data (operands) required for executing that instruction is

available

Control flow machines used shared memory for instructions and data. Since variables are

updated by many instructions, there may be side effects on other instructions. These side

effects frequently prevent parallel processing. Single processor systems are inherently

sequential.

Instructions in dataflow machines are unordered and can be executed as soon as their

operands are available; data is held in the instructions themselves. Data tokens are passed

from an instruction to its dependents to trigger execution.

Data Flow Features

No need for shared memory program counter control sequencer Special mechanisms are

required to detect data availability match data tokens with instructions needing them

enable chain reaction of asynchronous instruction execution

A Dataflow Architecture

 The Arvind machine (MIT) has N PEs and an N -by –N interconnection network. Each

PE has a token-matching mechanism that dispatches only instructions with data tokens

available. Each datum is tagged with

• address of instruction to which it belongs

• context in which the instruction is being executed

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

15

Tagged tokens enter PE through local path (pipelined), and can also be communicated to

other PEs through the routing network. Instruction address(es) effectively replace the

program counter in a control flow machine. Context identifier effectively replaces the

frame base register in a control flow machine. Since the dataflow machine matches the

data tags from one instruction with successors, synchronized instruction execution is

implicit.

Demand-Driven Mechanisms

Data-driven machines select instructions for execution based on the availability of their

operands; this is essentially a bottom-up approach.

Demand-driven machines take a top-down approach, attempting to execute the

instruction (a demander) that yields the final result. This triggers the execution of

instructions that yield its operands, and so forth. The demand-driven approach matches

naturally with functional programming languages (e.g. LISP and SCHEME).

Pattern driven computers : An instruction is executed when we obtain a particular data

patterns as output. There are two types of pattern driven computers

(1) String-reduction model: each demander gets a separate copy of the expression string to

evaluate each reduction step has an operator and embedded reference to demand the

corresponding operands each operator is suspended while arguments are evaluated

(2) Graph-reduction model: expression graph reduced by evaluation of branches or

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

16

subgraphs, possibly in parallel, with demanders given pointers to results of reductions.

based on sharing of pointers to arguments; traversal and reversal of pointers continues

until constant arguments are encountered.

2.4 System interconnect architecture

Various types of interconnection networks have been suggested for SIMD computers.

These are basically classified have been classified on network topologies into two

categories namely

 Static Networks

 Dynamic Networks

Static versus Dynamic Networks

The topological structure of an SIMD array processor is mainly characterized by the data

routing network used in interconnecting the processing elements.

The topological structure of an SIMD array processor is mainly characterized by the data

routing network used in the interconnecting the processing elements. To execute the

communication the routing function f is executed and via the interconnection network the

PEi copies the content of its Ri register into the Rf(i) register of PEf(i). The f(i) the

processor identified by the mapping function f. The data routing operation occurs in all

active PEs simultaneously.

Network properties and routing

The goals of an interconnection network are to provide low-latency high data transfer rate

wide communication bandwidth. Analysis includes latency bisection bandwidth data-

routing functions scalability of parallel architecture

These Network usually represented by a graph with a finite number of nodes linked by

directed or undirected edges.

Number of nodes in graph = network size .

Number of edges (links or channels) incident on a node = node degree d (also note in and

out degrees when edges are directed).

Node degree reflects number of I/O ports associated with a node, and should ideally be

small and constant.

Network is symmetric if the topology is the same looking from any node; these are easier

to implement or to program.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

17

Diameter : The maximum distance between any two processors in the network or

in other words we can say Diameter, is the maximum number of (routing) processors

through which a message must pass on its way from source to reach destination. Thus

diameter measures the maximum delay for transmitting a message from one processor to

another as it determines communication time hence smaller the diameter better will be

the network topology.

Connectivity: How many paths are possible between any two processors i.e., the

multiplicity of paths between two processors. Higher connectivity is desirable as it

minimizes contention.

Arch connectivity of the network: the minimum number of arcs that must be removed for

the network to break it into two disconnected networks. The arch connectivity of various

network are as follows

• 1 for linear arrays and binary trees

• 2 for rings and 2-d meshes

• 4 for 2-d torus

• d for d-dimensional hypercubes

Larger the arch connectivity lesser the conjunctions and better will be network topology.

Channel width : The channel width is the number of bits that can

communicated simultaneously by a interconnection bus connecting two processors

Bisection Width and Bandwidth: In order divide the network into equal halves we

require the remove some communication links. The minimum number of such

communication links that have to be removed are called the Bisection Width. Bisection

width basically provide us the information about the largest number of messages

which can be sent simultaneously (without needing to use the same wire or routing

processor at the same time and so delaying one another), no matter which processors

are sending to which other processors. Thus larger the bisection width is the better the

network topology is considered. Bisection Bandwidth is the minimum volume of

communication allowed

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

18

between two halves of the network with equal numbers of processors This is important

for the networks with weighted arcs where the weights correspond to the link width i.e.,

(how much data it can transfer). The Larger bisection width the better network topology

is considered.

Cost the cost of networking can be estimated on variety of criteria where we consider the

the number of communication links or wires used to design the network as the basis of

cost estimation. Smaller the better the cost

Data Routing Functions: A data routing network is used for inter –PE data exchange. It

can be static as in case of hypercube routing network or dynamic such as multistage

network. Various type of data routing functions are Shifting, Rotating, Permutation (one

to one), Broadcast (one to all), Multicast (many to many), Personalized broadcast (one to

many), Shuffle, Exchange Etc.

Permutations

Given n objects, there are n ! ways in which they can be reordered (one of which is no

reordering). A permutation can be specified by giving the rule for reordering a group of

objects. Permutations can be implemented using crossbar switches, multistage networks,

shifting, and broadcast operations. The time required to perform permutations of the

connections between nodes often dominates the network performance when n is large.

Perfect Shuffle and Exchange

Stone suggested the special permutation that entries according to the mapping of the k-bit

binary number a b … k to b c … k a (that is, shifting 1 bit to the left and wrapping it

around to the least significant bit position). The inverse perfect shuffle reverses the effect

of the perfect shuffle.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

19

Hypercube Routing Functions

If the vertices of a n-dimensional cube are labeled with n-bit numbers so that only one bit

differs between each pair of adjacent vertices, then n routing functions are defined by the

bits in the node (vertex) address. For example, with a 3-dimensional cube, we can easily

identify routing functions that exchange data between nodes with addresses that differ in

the least significant, most significant, or middle bit.

Factors Affecting Performance

Functionality – how the network supports data routing, interrupt handling,

synchronization, request/message combining, and coherence

Network latency – worst-case time for a unit message to be transferred

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

20

Bandwidth – maximum data rate

Hardware complexity – implementation costs for wire, logic, switches, connectors, etc.

Scalability – how easily does the scheme adapt to an increasing number of processors,

memories, etc.?

Static connection Networks

In static network the interconnection network is fixed and permanent interconnection

path between two processing elements and data communication has to follow a fixed

route to reach the destination processing element. Thus it Consist of a number of point-

to-point links. Topologies in the static networks can be classified according to the

dimension required for layout i.e., it can be 1-D, 2-D, 3-D or hypercube.

One dimensional topologies include Linear array as shown in figure 2.2 (a) used in some

pipeline architecture.

Various 2-D topologies are

• The ring (figure 2.2(b))

• Star (figure 2.2(c))

• Tree (figure 2.2(d))

• Mesh (figure 2.2(e))

• Systolic Array (figure 2.2(f))

3-D topologies include

• Completely connected chordal ring (figure 2.2(g))

• Chordal ring (figure 2.2(h))

• 3 cube (figure 2.2(i))

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

21

Figure 2.2 Static interconnection network topologies.

Torus architecture is also one of popular network topology it is extension of the mesh by

having wraparound connections Figure below is a 2D Torus This architecture of torus is

a symmetric topology unlike mesh which is not. The wraparound connections reduce the

torus diameter and at the same time restore the symmetry. It can be

o 1-D torus

2-D torus

3-D torus

The torus topology is used in Cray T3E

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

Figure 2.3 Torus technology

We can have further higher dimension circuits for example 3-cube connected cycle. A D-

dimension W-wide hypercube contains W nodes in each dimension and there is a

connection to a node in each dimension. The mesh and the cube architecture are actually

2-D and 3-D hypercube respectively. The below figure we have hypercube with

dimension 4.

Figure 2.4 4-D hypercube.

Dynamic connection Networks

• Dynamic connection networks can implement all communication patterns based on

program demands.

• In increasing order of cost and performance, these include

o bus systems

o multistage interconnection networks

o crossbar switch networks

• Price can be attributed to the cost of wires, switches, arbiters, and connectors.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

• Performance is indicated by network bandwidth, data transfer rate, network latency,

and communication patterns supported.

Bus Systems

• A bus system (contention bus, time-sharing bus) has

o a collection of wires and connectors

o multiple modules (processors, memories, peripherals, etc.) which connect to

the wires

o data transactions between pairs of modules

• Bus supports only one transaction at a time.

• Bus arbitration logic must deal with conflicting requests.

• Lowest cost and bandwidth of all dynamic schemes.

• Many bus standards are available.

Switch Modules

• An a  b switch module has a inputs and b outputs. A binary switch has a = b = 2.

• It is not necessary for a = b, but usually a = b = 2
k
, for some integer k.

• In general, any input can be connected to one or more of the outputs. However,

multiple inputs may not be connected to the same output.

• When only one-to-one mappings are allowed, the switch is called a crossbar switch.

Multistage Networks

• In general, any multistage network is comprised of a collection of a  b switch

modules and fixed network modules. The a  b switch modules are used to provide

variable permutation or other reordering of the inputs, which are then further

reordered by the fixed network modules.

• A generic multistage network consists of a sequence alternating dynamic switches

(with relatively small values for a and b) with static networks (with larger numbers

of inputs and outputs). The static networks are used to implement interstage

connections (ISC).

Omega Network

• A 2  2 switch can be configured for

o Straight-through

o Crossover

o Upper broadcast (upper input to both outputs)

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

o Lower broadcast (lower input to both outputs)

o (No output is a somewhat vacuous possibility as well)

• With four stages of eight 2  2 switches, and a static perfect shuffle for each of the

four ISCs, a 16 by 16 Omega network can be constructed (but not all permutations

are possible).

• In general , an n-input Omega network requires log 2 n stages of 2  2 switches and

n / 2 switch modules.

Baseline Network

• A baseline network can be shown to be topologically equivalent to other networks

(including Omega), and has a simple recursive generation procedure.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

• Stage k (k = 0, 1, …) is an m  m switch block (where m = N / 2
k
) composed

entirely of 2  2 switch blocks, each having two configurations: straight through

and crossover.

Crossbar Networks

• A m  n crossbar network can be used to provide a constant latency connection

between devices; it can be thought of as a single stage switch.

• Different types of devices can be connected, yielding different constraints on which

switches can be enabled.

o With m processors and n memories, one processor may be able to generate

requests for multiple memories in sequence; thus several switches might be

set in the same row.

o For m  m interprocessor communication, each PE is connected to both an

input and an output of the crossbar; only one switch in each row and column

can be turned on simultaneously. Additional control processors are used to

manage the crossbar itself.

Prepared by, Sunil Kumar B.L. and Kishor Shivathaya, Canara Engineering College, Benjanapadavu.

Reference: Advanced Computer Architecture by Kai Hwang , Naresh Jotwani.

